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EXECUTIVE SUMMARY 

 

The subcooled and low-quality saturated flow boiling critical heat flux (CHF) corresponding to the 

departure from nucleate boiling (DNB) is one of the major limiting factors in the design and operation of 

pressurized water reactors (PWRs). Due to lack of agreement on its physical mechanisms, development 

of an accurate DNB-type CHF model has been elusive. The various steady-state (SS) predictive tools that 

have been proposed can be grouped into two categories: (1) data-driven methods—namely best-fit 

empirical correlations and look-up tables that result in relatively good agreement with specific 

experimental datasets but often fail to extend beyond their ranges of validity, and (2) the physics-based 

mechanistic models that rely on reasonable yet limited understanding of the underlying physics and apply 

constitutive relations to close the conservation equations. 

On one hand, with recent advances in computational capabilities and optimization techniques, machine 

learning (ML)-based methods constitute an alternative and a more advanced, data-driven approach. With 

enough data, they can be particularly useful in engineering fields where the physical phenomena are 

complex and challenging to model. On the other hand, a state-of-the-art physics-driven approach would 

not only provide more accurate prediction of SS CHF, but it would also help better understand and model 

transient applications. 

The data-driven regression models use deep feed-forward neural networks (NNs) and random forests to 

cross-validate with 1,865 CHF test cases, covering a wide range of flow conditions and channel geometries. 

The best-estimate ML-based predictors compare favorably with the widely used look-up table for annulus 

and plate, and sensitivity analysis has confirmed their effectiveness. The key advantage of ML-based 

methods is their online extensibility of applicability domain. The proposed physics-driven approach 

combines key assumptions and parameters in the relatively well-accepted theories of liquid sublayer 

dryout and near-wall bubble crowding. A more realistic understanding of local mechanisms has been 

modeled. The new model has been optimized and validated against 1,439 tube data, and it shows 

considerably improved performance when compared to a recent mechanistic model, demonstrating 

unbiased close agreement with measurements over a wide range of operating conditions. 

Future work will extend the improved physics-driven model to non-tube geometry applications and will 

couple the model with ML via a hybrid approach. The mechanistic SS work will also serve to improve 

understanding and to model transient CHF scenarios. 

 

  



Predicting Departure from Nucleate Boiling with Advanced Data- and Physics-Driven Approaches 

Consortium for Advanced Simulation of LWRs iv CASL-U-2018-1676-000 

(This page intentionally left blank) 

 



Predicting Departure from Nucleate Boiling with Advanced Data- and Physics-Driven Approaches 

CASL-U-2018-1676-000 v Consortium for Advanced Simulation of LWRs 

CONTENTS 

 

EXECUTIVE SUMMARY ................................................................................................................. iii 

CONTENTS ...........................................................................................................................................v 

FIGURES ............................................................................................................................................. vi 

TABLES ............................................................................................................................................. vii 

NOMENCLATURE .......................................................................................................................... viii 

1. INTRODUCTION ...........................................................................................................................1 
1.1. Background and Motivation ....................................................................................................1 
1.2. Work Scope .............................................................................................................................1 

2. ADVANCED DATA-DRIVEN APPROACH: ML-BASED METHODS .....................................2 
2.1. Overview .................................................................................................................................2 
2.2. Data Description ......................................................................................................................3 
2.3. Training, Validation, and Comparison ....................................................................................3 
2.4. Sensitivity Analysis .................................................................................................................9 

3. ADVANCED PHYSICS-DRIVEN APPROACH: MECHANISTIC MODEL ..............................9 
3.1. Overview .................................................................................................................................9 
3.2. New Model Description ........................................................................................................12 
3.3. Model Evaluation ..................................................................................................................18 

4. CONCLUSIONS AND FUTURE WORK ....................................................................................34 

ACKNOWLEDGMENTS ...................................................................................................................35 

REFERENCES ....................................................................................................................................36 
 

 



Predicting Departure from Nucleate Boiling with Advanced Data- and Physics-Driven Approaches 

Consortium for Advanced Simulation of LWRs vi CASL-U-2018-1676-000 

FIGURES 

 

Figure 1. Example of a 3/5/6/2 NN architecture. ........................................................................................ 2 
Figure 2. Simplified RF algorithm structure. .............................................................................................. 2 
Figure 3. Cumulative data fraction of absolute relative error  for best-estimate ML-based predictors and 

look-up table. .............................................................................................................................................. 6 
Figure 4. Predicted vs. measured CHF with best-estimate  ML-based predictors and look-up table. ........ 8 
Figure 5. Simplified sketch of the liquid sublayer dryout theory. ............................................................ 10 
Figure 6. Schematic view of a stable vapor blanket in the Liu model.21 .................................................. 11 
Figure 7. Schematic view of the flow channel in a round tube at near-CHF conditions. ......................... 13 
Figure 8. Predicted vs. measured tube CHF with look-up table,  Liu model, best-estimate NN (10-fold), 

and new model. ......................................................................................................................................... 21 
Figure 9. Tube CHF relative error vs. pressure. ....................................................................................... 23 
Figure 10. Tube CHF relative error vs. mass flux. ................................................................................... 26 
Figure 11. Tube CHF relative error vs. exit equilibrium quality. ............................................................. 28 
Figure 12. Tube CHF relative error vs. tube diameter. ............................................................................. 31 
Figure 13. Tube CHF relative error vs. length-to-diameter ratio. ............................................................. 33 

 

 

  



Predicting Departure from Nucleate Boiling with Advanced Data- and Physics-Driven Approaches 

CASL-U-2018-1676-000 vii Consortium for Advanced Simulation of LWRs 

TABLES 

 

Table 1.  CHF dataset: baseline input variable ranges for ML-based methods. ......................................... 3 
Table 2.  ML-based CHF predictor performance on all data: sensitivity study. ......................................... 9 
Table 3.  Optimized piecewise constant function for c3 in Eq. (9). .......................................................... 15 
Table 4.  Predicted tube SS CHF performance with different models...................................................... 18 

 

 



Predicting Departure from Nucleate Boiling with Advanced Data- and Physics-Driven Approaches 

Consortium for Advanced Simulation of LWRs viii CASL-U-2018-1676-000 

NOMENCLATURE 

 

𝐴: area 

𝐶𝐷: drag coefficient 

𝐶𝑝: specific heat at constant pressure 

𝐷: diameter 

𝐹: force 

𝑓: friction factor 

𝐺: mass flux 

𝑔: gravitational acceleration 

ℎ𝑓𝑔: latent heat of vaporization 

𝐿: length 

�̇�: mass flow rate 

𝑃: pressure 

𝑞′′: heat flux 

𝑅𝑒: Reynolds number 

𝑇: temperature 

𝑈: velocity 

𝑈𝜏: friction velocity 

𝑥: flow quality 

𝑥𝑒: equilibrium quality 

𝑦: distance from the wall [to bubble centerline] 

𝑦+: non-dimensional distance from the wall 

 

Greek symbols 

 

𝛼: void fraction 

𝛿: liquid sublayer thickness 

𝛿𝑏: bubble region thickness 

휀: surface roughness 

𝜂: fraction of cross-sectional area 

𝜆: critical wavelength 

𝜌: density 

𝜎: surface tension 

𝜏: shear stress 

𝜇: dynamic viscosity 
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Subscripts 

 

1: interface I 

2: interface II / local region on the right-hand side of interface II 

b: bubble region (bubbly layer) 

B: vapor blanket 

c: core region 

d: departure 

f: saturated liquid 

g: saturated vapor 

l: liquid 

out: channel outlet 

sat: saturation 

v: vapor 

w: wall 

 

Acronyms 

 

API: application programming interface 

BWR: boiling water reactor 

CHF: critical heat flux 

DNB: departure from nucleate boiling 

ML: machine learning 

NN: neural network 

PWR: pressurized water reactor 

ReLU: rectified linear unit 

RF: random forest 

RIA: reactivity-initiated accident 

rRMSE: root mean squared relative error 

SS: steady state 

V&V: validation and verification 
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1. INTRODUCTION 

1.1. Background and Motivation 

The departure from nucleate boiling (DNB) crisis can trigger a set of cascading failures in a 

pressurized water reactor (PWR). Due to a lack of agreement in the physical mechanisms, developing an 

accurate model for DNB-type critical heat flux (CHF) has been elusive. During the past few decades, the 

reactor thermal-hydraulics community has proposed over 500 predictive tools under steady-state (SS) 

conditions. The data-driven methods—namely best-fit empirical correlations and look-up tables—result 

in relatively good agreement with specific experimental datasets, but they often fail to extend beyond their 

ranges of validity. The physics-based mechanistic models rely on a reasonable yet limited understanding 

of the underlying physics supplemented with mostly empirical closure relations. 

Modeling and simulation of PWR transients in system or subchannel codes are currently performed 

with a quasi–steady-state approach in which SS correlations or look-up tables are applied with time-

dependent flow variables. However, existing experimental studies1 have revealed that during fast 

transients such as a reactivity-initiated accident (RIA), the CHF values can become significantly higher 

than those in SS or slow transient scenarios; such an approach would lead to overly conservative DNB 

predictions. 

A robust, mechanistic transient CHF model was recently proposed.1 It clearly outperformed the 

quasi–steady-state approach, and it generally agreed well with measurements from three sets of power 

transient experiments with different channel geometries at different operating conditions. However, a 

basic assumption in the model was made such that the corresponding initial value (i.e., SS CHF which 

serves as the starting point in the transient model) was estimated to be the measured CHF at the slowest 

power ramp rate for each test case. This was done because the widely used look-up table method could 

not be used to perform proper validation and verification (V&V) without correction factor tuning for 

geometries other than round tubes.1,2 Moreover, the model still significantly under-estimated CHF for very 

fast transients at low pressures, and the assumed DNB triggering mechanisms would require further 

investigation. 

On one hand, with recent advances in computational capabilities and optimization techniques, 

machine learning (ML) methods constitute a more advanced, alternative, data-driven approach. With 

enough data, ML methods can be particularly useful when physical phenomena are complex and 

challenging to model. On the other hand, a state-of-the-art, physics-driven approach would not only 

provide more robust, accurate prediction of SS CHF but also help better understand and model the 

mechanisms during transients so as to further improve the predictive capabilities of the transient CHF 

model. 

 

1.2. Work Scope 

This report will first present work related to ML-based SS CHF predictors in subcooled and low-

quality saturated flow boiling. Two advanced regression methods were applied: deep feed-forward neural 

network (NN), and tree-based random forest (RF). A dataset covering a wide range of flow conditions and 

channel geometries was collected for model training and validation, and results were compared with the 

prevalent 2006 CHF look-up table.3 In the second place, an advanced mechanistic model combining the 

two most generally accepted DNB theories—liquid sublayer dryout and near-wall bubble crowding—will 

be proposed and evaluated against round tube data as well as other predictive tools. 
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2. ADVANCED DATA-DRIVEN APPROACH: ML-BASED METHODS 

2.1. Overview 

As illustrated in Figure 1, the deep feed-forward NN is a collection of multilayer, fully-connected 

units ("neurons"), capable of non-linear mapping via activation functions (also known as transfer 

functions). The weights of the units are updated by the backward propagation learning algorithm using 

gradient descent. The random forest is a fast, flexible, tree-based ML method that produces reliable results 

without much tuning of hyperparameters.a By randomly selecting observations and features using the 

bootstrap aggregation ("bagging")b technique, multiple decision trees are built and predictions are then 

averaged, as depicted in Figure 2. Both of these regression methods allow for high generalization ability 

when properly sampled and trained, and the black-box characteristics of ML-based predictors make them 

powerful, precluding the need for explicit mathematical modeling. 

 

 

Figure 1. Example of a 3/5/6/2 NN architecture. 

 

 

Figure 2. Simplified RF algorithm structure. 

 

                                                 
a Hyperparameters are parameters with values that are set before learning starts. 
b Bagging is a special case of the model averaging approach that is designed to improve accuracy and reduce variance. 
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Although ML is not new to nuclear engineering, little work has been performed in this area for fluid 

flow and heat transfer problems. One major obstacle is the lack of experimental data. In regard to SS CHF, 

most nonproprietary measurements were conducted with steam-water mixtures in internally heated round 

tubes. None of the recent publications in this field distinguishes DNB with dryout, which is the boiling 

crisis in a boiling water reactor (BWR).4–7 Note that DNB only occurs in subcooled and low-quality 

saturated flow, whereas dryout is triggered at much higher quality and lower heat flux; the term CHF is 

sometimes confusingly used for both boiling crises, though. No recent publications used cross-validation 

to evaluate their predictors, and none assessed the sensitivity of different hyperparameters or discussed 

regularization (an ML technique that prevents overfitting and reduces test error). 

 

2.2. Data Description 

Relevant publications which include tabulated, nonproprietary, experimental CHF data have been 

reviewed, and a dataset of 1,865 test cases was collected. The dataset covers a wide range of flow 

conditions while limiting the focus to DNB-specific characteristics: local equilibrium quality cannot 

exceed 0.2. The heater geometry was limited to a round tube, an annulus, or one side of a heated plate. 

Input features collected from raw data comprised exit pressure, mass flux, local (exit) equilibrium quality, 

equivalent and heated diameter, and heated length. The target/output was CHF and the axial heating profile 

was uniform. The experimental ranges of the dataset are summarized in Table 1. The SS DNB 

measurement uncertainties were on the order of 10–15%.2,16 

While the RF predictor generally performs well with raw inputs, NNs require feature engineering. 

This process involves transforming measured data into a set of features with properties that can be handled 

effectively by ML algorithms. For this work, standardization was applied to the input vectors of pressure, 

mass flux, equivalent and heated diameter, and heated length. The geometry indicator was not included in 

the baseline input feature vector, and the effectiveness of the predictors will be evaluated later. 

 

Table 1.  CHF dataset: baseline input variable ranges for ML-based methods. 

Author Geometry 

Feature #1 Feature #2 Feature #3 Feature #4 Feature #5 Feature #6 

# of data pressure mass flux 
equilibrium 

quality 

equivalent 

diameter 

heated 

diameter 

heated 

length 

(MPa) (kg/m2-s) (-) (mm) (mm) (mm) 

Inasaka8 

tube 

0.31 to 0.91 4,300 to 6,700 -0.15 to -0.04 3.0 3.0 100 7 

Peskov9 12 to 20 750 to 5,361 -0.23 to 0.13 10.0 10.0 400 to 1,650 17 

Thompson10 0.1 to 20.7 542 to 7,975 -0.45 to 0.21 1.0 to 37.5 1.0 to 37.5 25 to 3,048 1,202 

Weatherhead11 13.8 332 to 2,712 -0.49 to 0.19 7.7 to 11.1 7.7 to 11.1 457 162 

Williams12 5.5 to 15.2 670 to 4,684 -0.03 to 0.17 9.5 9.5 1,836 51 

Beus13 

annulus 

5.5 to 15.5 671 to 3,721 -0.31 to 0.20 5.6 15.2 2,134 77 

Janssen14 4.1 to 9.7 381 to 5,913 -0.13 to 0.20 4.6 to 22.2 11.3 to 96.3 737 to 2,743 282 

Mortimore15 8.3 to 13.8 677 to 3,637 -0.13 to 0.20 5.0 13.3 2,134 19 

Kossolapov2 

plate 
0.1 0 to 2,078 -0.14 to -0.02 15.0 120.0 10 12 

Richenderfer16 0.1 to 1.0 1,000 to 2,000 -0.04 to -0.01 15.0 120.0 10 36 

 

2.3. Training, Validation, and Comparison 

Both NN and RF predictors were trained and validated using the Keras application programming 

interface (API) with TensorFlow backend and scikit-learn library in Python 3.6. Given the relatively small 
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size of the dataset, the shuffled 10-fold cross-validation techniquea was used to evaluate how the predictors 

perform on independent validation data. The loss function is the mean squared error, and the performance 

metric is the root mean squared relative error (rRMSE). The NN weights were initiated from a randomly 

uniform distribution. Based on the preliminary sensitivity study,17 the Adamb optimization algorithm was 

applied to update weights and biases; the rectified linear unit (ReLU)c activation function was used on the 

hidden layers due to its high reliability. 

The effects of different hyper-parameters were evaluated,17 including regularization or early stopping, 

the number of hidden layers and hidden units for NN, the number of epochsd for NN, the number of 

decision trees for RF, and the maximum feature percentage for RF. The best-estimate ML-based CHF 

predictors were determined for both methods: 

• NN: 6/50/50/50/1 architecture (i.e., the input layer has 6 neurons, each of the 3 hidden layers has 

50 neurons, and the output layer has 1 neuron), no regularization 

• RF: 100 trees, 60% features allowed in individual trees, no early-stopping 

As discussed by Zhao,17 given the dimension of the feature vector and the number of data points, 

there should not be a concern about over-fitting. The best-estimate predictors are compared against 

measurements and the well-used 2006 look-up table.3 The look-up table is a normalized steam-water CHF 

map for vertical 8 mm tubes that predicts DNB and dryout (not distinguished) as a function of pressure, 

mass flux, and local equilibrium quality. It was derived from a large data bank covering a wide range of 

flow conditions. Empirical correction factors were introduced to account for the effects of diameter and 

other geometry types. The table method is simple to use and has a very low computational cost. Compared 

to physics-based mechanistic models, it requires no assumptions and closures, although it captures less 

physical information, and the applicability outside its validity range is doubtful. 

Figure 3 and Figure 4 compare the performance of different predictors on all 1,865 data points, to 

include 1,439 for the tube, 378 for the annulus, and 48 for the one-side heated plate. While the training 

errors are very small (rRMSE = 7.2% with NN; 5.2% with RF), there is more interest in the cross-

validation errors since the goal of ML algorithms is to perform well on unseen future data. The error 

differences between the approach to train and validate with all data and then analyze for each geometry 

(shown as “from all data”) and the approach to train and validate each geometry separately (shown as 

“tube/annulus/plate data only”) are small, with one exception: NN for plate. This result suggests that the 

predictions seem to be contained within a reasonable bound. Cross-validation (10-fold) using NN or RF 

(1) performs in a manner similar to the look-up table for the tube (the look-up table slightly outperforms, 

but the tube data used in this work was part of the data source for generating the 2006 look-up table) (2) 

yields reduced errors for the annulus, (3) and significantly outperforms the table method for the plate. 

As can be seen in Figures 3(d)–4(d), the two ML-based predictors, which were cross-validated using 

the entire database, agree closely with each other and with plate measurements. About 90% of predicted 

data fall within ±20% uncertainty. However, the look-up table tends to dramatically underestimate the 

one-side heated plate CHF. This underestimation is consistent with previous assessments,1,2,16 possibly 

due to the much smaller heated length of the plate heaters used for this work than those of the tubes used 

for generating the look-up table. It should be noted that if the plate data were not included in training, then 

similar poor performance would be expected with NN or RF. The key advantage of ML-based predictors 

is their online extensibility of applicability domain. 

                                                 
a randomly shuffled dataset prior to cross-validation, then ten times of “90% train data + 10% validation data” at each time 
b The Adam optimization algorithm combines the advantages of various extensions of the classic stochastic gradient descent 

procedure. It is popular in the field of deep learning and requires minimal tuning. 
c 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) is a good approximator, as any function can be approximated with combinations of ReLU. 
d Each epoch represents one forward pass and one backward pass of all the training examples. 
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(a) all data 

 

(b) tube data 
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(c) annulus data 

 

(d) plate data 

Figure 3. Cumulative data fraction of absolute relative error  

for best-estimate ML-based predictors and look-up table. 
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(a) all data 

 

(b) tube data 
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(c) annulus data 

 

(d) plate data 

Figure 4. Predicted vs. measured CHF with best-estimate  

ML-based predictors and look-up table. 
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2.4. Sensitivity Analysis 

Three sets of sensitivity studies have been conducted to assess the generalizability and effectiveness 

of the best-estimate ML-based predictors: 

i) cross-validation technique: 10-fold vs. 5-folda 

ii) input features: with geometry indicator vs. without geometry indicatorb 

iii) choice of input feature #3 (in Error! Reference source not found.): local/exit equilibrium 

qualityc vs. inlet temperature subcooling 

Table 2 summarizes the performance of four scenarios (baseline and three sensitivity cases) on the 

entire database. The effect of the subsample number in cross-validation (10- vs. 5-fold) is negligible; the 

ML community highly recommends allocating at least 70% of the available data for training,d particularly 

for small datasets. Adding the geometry indicator increases the input feature dimension, but it also requires 

more training data to achieve better fitting and to further improve the performance. Replacing the exit 

equilibrium quality with inlet subcooling clearly reduces the overall error, which is more notable with NN, 

although the two variables are mathematically inter-derivable using fluid properties and heat balance. 

 

Table 2.  ML-based CHF predictor performance on all data: sensitivity study. 

Case # 
Cross-

validation 

Geometry 

indicator 
Input feature #3 

NN validation 

rRMSE 

NN validation within 

20% absolute error 

RF validation 

rRMSE 

RF validation within 

20% absolute error 

baseline 10-fold no local quality 0.14 92% 0.14 92% 

i 5-fold no local quality 0.14 91% 0.14 91% 

ii 10-fold yes local quality 0.14 92% 0.14 92% 

iii 10-fold no inlet subcooling 0.09 97% 0.12 94% 

 

 

3. ADVANCED PHYSICS-DRIVEN APPROACH: MECHANISTIC MODEL 

3.1. Overview 

Over the years, numerous mechanistic DNB models in flow boiling have been developed, and their 

approaches can be grouped into six theory categories18 according to their main respective triggering 

mechanisms and the following chronological order: 

(1) Liquid layer superheat limit theory (1965), which assumed that CHF occurs when the liquid layer 

adjacent to the heated wall reaches its critical enthalpy; 

(2) Boundary layer separation theory (1968–1975), in which the stagnant liquid underneath the 

boundary layer evaporates and results in a vapor blanket on the heated wall; 

(3) Liquid flow blockage theory (1980–1981), which postulated that CHF is triggered when the 

supply liquid normal to the wall is blocked by the flow of vapor; 

                                                 
a five times of “80% train data + 20% validation data” at each time 
b represented in the form of one-hot encoding (i.e., tube = [1,0,0], annulus = [0,1,0], plate = [0,0,1]) 
c Local quality was favored over inlet subcooling in the baseline input features to be consistent with the look-up table, which 

is a tabulated function of pressure, mass flux, and local equilibrium quality. 
d which implies that in n-fold cross-validation, n ≥ 4 
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(4) Vapor removal limit and bubble crowding theory (1981–1985), which considered a critical value 

of void fraction in the near wall bubble layer, thus preventing access of supply liquid; 

(5) Liquid sublayer dryout theory (1988–2010), in which the onset of CHF is caused by the depletion 

of a thin superheated liquid layer underneath a vapor slug flowing over the heated wall due to 

evaporation (sketched in Figure 5); 

(6) Interfacial lift-off theory (1993), in which CHF is assumed to occur when vapor effusion lifts the 

first wetting front off of the heater’s surface (only applicable at high heat fluxes in which bubbles 

coalesce into a continuous wavy vapor layer). 

 

 

Figure 5. Simplified sketch of the liquid sublayer dryout theory. 

 

Of the six categories, two have received considerable attention: liquid sublayer dryout and near-wall 

bubble crowding. The former theory has been supported by most of the recent experimental evidence.18,19 

Moreover, it is widely admitted that DNB in subcooled or low-quality saturated flow boiling has strong 

behavior similarities to pool boiling DNB, both being governed by the hydrodynamic instability of the 

liquid-vapor interface. It is therefore worth reviewing the state of art on the theory of liquid sublayer 

dryout proposed by various authors and attempting a more advanced, more realistic physics-driven 

approach combining the key characteristics of both theories. 

In the category of liquid sublayer dryout theory, the original model for subcooled flow boiling in a 

round tube was proposed by Lee and Mudawar (1988),20 assuming that a thin vertical distorted cylindrical 

vapor blanket is formed at near-CHF conditions as a consequence of small bubbles piling up along the 

near-wall region. The equivalent diameter (or thickness) of the vapor blanket is approximately equal to 

the bubble departure diameter, whereas its length is assumed to be equal to the critical wavelength of 

Helmholtz instability at the sublayer-blanket interface. CHF is postulated to occur when the rate of liquid 

sublayer evaporation exceeds that of the liquid supply from the bulk region. A force balance on the vapor 

blanket in the radial direction was applied to calculate the liquid sublayer thickness, and three empirical 

constants were introduced and optimized in the process. The model was later found to behave poorly at 

low pressures18,21 since corresponding tests had not been included in the validation database. 

Katto (1990)19 proposed a model based on a previous model by Haramura and Katto (1983)22 for 

saturated pool boiling on an infinite horizontal flat plate. In both models, the vapor blanket is continuously 

replenished by a large number of small vapor stems normal to the heated surface which originated from 

nucleate boiling. Hydrodynamic instabilities at both stems-sublayer and sublayer-blanket interfaces are 

considered. In flow boiling, the same vapor stem coverage area as used in pool boiling was assumed, while 

the effects of forced convection and subcooling were investigated. No supply liquid was included during 

the passage time of the vapor blanket. This model served as the basis for the prevailing thinning processes 
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in the recently developed transient CHF model.1 However, the Katto model was determined to be 

incapable of predicting accurate CHF for cases in which the local void fraction in the near-wall bubbly 

layer exceeded 70%,21 and the existence of the modeled vapor stems is under question due to lack of 

experimental evidence. 

Celata et al. (1994)23 followed the same procedure as in Lee and Mudawar20 to calculate the vapor 

blanket thickness, length, and velocity. The authors assumed that the vapor blanket lied on the superheated 

layer boundary (i.e., it existed only in the near-wall region where the local liquid is superheated), a strong 

assumption which proved to be inapplicable to near-saturation or saturated applications. Also, the model 

remained deficient in predictions at low 𝐿/𝐷or high-pressure conditions.21 

Celata et al. (1999)24 later proposed a simpler approach—the so-called superheated layer vapor 

replenishment model—which used the same assumptions and closures as in the previous model. 

According to the new approach, CHF should occur when the vapor blanket replenishes the superheated 

layer, coming into contact with the heated surface. The validation performance was similar to that using 

the previous model, and the superheated assumption was still defective in low subcooling cases. 

Liu et al. (2000)21 proposed a new approach to determine the vapor blanket velocity. As shown in 

Figure 6, besides the sublayer-blanket interface (interface I), the authors also investigated the right-hand 

interface (interface II) and proved that the two interface wavelengths were equal to the vapor blanket 

length if the vapor blanket is stable. The core regiona void fraction was simplified as the channel-averaged 

void fraction (i.e., all bubbles were assumed to be in the core region), as the liquid sublayer and the vapor 

blanket were claimed to be very thin. This assumption clearly contradicts the theory of vapor removal 

limit and bubble crowding, in which most bubbles accumulate in the vicinity of the wall. Similarly, the 

model only focused on subcooled boiling. 

 

 

Figure 6. Schematic view of a stable vapor blanket in the Liu model.21 

 

An improved, more realistic physics-based model combining the key components of the Liu model 

and the bubble crowding theory will be proposed. The new model will be optimized and validated with 

the round tube data as described in Section 2.2. 

                                                 
a Definition of the core region will be different in the proposed new model (Section 3.2). 
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3.2. New Model Description 

Based on Lee and Mudawar,20 DNB is triggered at the complete depletion of the liquid sublayer. 

Using heat balance, the CHF can be described as: 

𝑞𝐶𝐻𝐹
′′ =

𝜌𝑓𝛿[ℎ𝑓𝑔+𝑐1𝐶𝑝𝑙(𝑇𝑠𝑎𝑡−𝑇𝑏𝑢𝑙𝑘)]

𝐿𝐵
𝑈𝐵 (1) 

where 𝛿  is the liquid sublayer thickness, and 𝐿𝐵  and 𝑈𝐵  denote the vapor blanket length and the 

velocity. The optimized empirical constant 𝑐1 = (𝑇𝑠𝑎𝑡 − 𝑇𝑠𝑢𝑝𝑝𝑙𝑦)/(𝑇𝑠𝑎𝑡 − 𝑇𝑏𝑢𝑙𝑘) = 0.35, suggesting that 

the subcooling of the supply liquid is 35% of the bulk subcooling.20 The sensitivity study reveals that the 

CHF is not sensitive to the value of 𝑐1, and other papers19,21-24 do not address the supply liquid component 

shown in Eq. (1). The liquid specific heat 𝐶𝑝𝑙 ≅ (𝐶𝑝𝑓 + 𝐶𝑝,𝑠𝑢𝑝𝑝𝑙𝑦)/2 ≅ 𝐶𝑝𝑓. 

 

Vapor blanket length 𝐿𝐵 

As demonstrated in Liu et al.,21 the vapor blanket length is equal to the same critical wavelength of 

the two interfaces, i.e., 

𝐿𝐵 = 𝜆1 = 𝜆2,  (2) 

where 𝜆1 is the critical wavelength at interface I in Figure 6, which can be expressed as: 

𝜆1 =
2𝜋𝜎(𝜌𝑓+𝜌𝑔)

𝜌𝑓𝜌𝑔(𝑈𝐵−𝑈𝑠𝑢𝑏𝑙𝑎𝑦𝑒𝑟)2
≅

2𝜋𝜎(𝜌𝑓+𝜌𝑔)

𝜌𝑓𝜌𝑔𝑈𝐵
2  (3) 

The thin liquid sublayer is attached to the wall and confined underneath the vapor blanket. Its average 

velocity can be neglected as compared to that of the vapor blanket. Similarly, the wavelength at interface II 

can be written as: 

𝜆2 =
2𝜋𝜎(𝜌2+𝜌𝑔)

𝜌𝑓𝜌𝑔(𝑈2−𝑈𝐵)2
=

2𝜋𝜎(𝜌𝑏+𝜌𝑔)

𝜌𝑓𝜌𝑔(𝑈𝑏−𝑈𝐵)2
, (4) 

where the subscript 2 under density and velocity denotes the local region on the right-hand side of 

interface II. As originally presented in Weisman and Pei’s bubble crowding theory25 and as illustrated in 

Figure 7, the flow channel in subcooled, or low-quality saturated boiling can be divided into two regions 

at near-CHF conditions: near-wall bubble region (or bubbly layer) and core region. As will be discussed 

later on the bubble region thickness, the local region 2 should fall within the bubble region (with 

subscript b). 

From Eqs. (2)–(3), the calculation of 𝐿𝐵 requires knowledge of the vapor blanket velocity, 𝑈𝐵. 

 

Vapor blanket velocity 𝑈𝐵 

Combining Eqs. (2)–(4), one can get: 

𝑈𝐵 =
𝑈𝑏

1+√
𝜌𝑓

𝜌𝑓+𝜌𝑔

𝜌𝑏+𝜌𝑔

𝜌𝑏

, (5) 
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where the mixture density in the bubble region 𝜌𝑏  can be calculated from Eq. (6), assuming two-phase 

flow at thermal equilibrium (i.e., saturation): 

𝜌𝑏 = 𝜌𝑔𝛼𝑏 + 𝜌𝑓(1 − 𝛼𝑏) (6) 

 

 

Figure 7. Schematic view of the flow channel in a round tube at near-CHF conditions. 

 

The void fraction in bubble region 𝛼𝑏, also known as the critical wall-void fraction, is a key parameter 

inherent to the bubble crowding theory. Various values or data-fitting correlations have been attempted, 

comprising: 

𝛼𝑏 =  0.82 by Weisman and Pei (1983)25 

 0.75  Chang and Lee (1989)26 

 function of local equilibrium quality  Kwon and Chang (1999)27 

 
0.8 

 Kodama and Kataoka (2003)28 

  Vyskocil and Macek (2015)29 

 function of pressure and local flow quality  Pan et al. (2016)30 

 

At this point, there are not sufficient data27 to accurately determine 𝛼𝑏, and as discussed in Kodama 

and Kataoka,28 the predicted CHF should not be strongly dependent on this critical void value. To avoid 

introducing further empiricism and complexity to the model, its value is set as follows: 

𝛼𝑏 = 0.8 (7) 

Another key parameter in the bubble crowding theory is the bubble region thickness 𝛿𝑏, which was 

also determined empirically by best-fitting to different datasets. It has been widely modeled as a constant 

multiplier of the bubble departure diameter 𝐷𝑑, i.e.: 

𝛿𝑏 = 𝑐2 ∙ 𝐷𝑑 where 𝑐2 =  2.5 by Weisman and Pei (1983)25 

 1.7  Chang and Lee (1989)26 

 1.0  Kwon and Chang (1999)27 

 10.0  Yu and Zhang (2010)31 
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The multiplier 𝑐2  was fitted with datasets at different operating conditions and different bubble 

departure diameter models. Based on the preliminary sensitivity work using Thompson’s data from Table 

1 and the modified-Staub bubble diameter model (detailed below), 𝑐2 should mostly depend on the length-

to-diameter ratio 𝐿/𝐷, and it is optimized in the form of piecewise constants: 

𝛿𝑏 = 𝑐2 ∙ 𝐷𝑑, (8) 

where 𝑐2 =

{
 
 

 
 
10, 𝐿/𝐷 ≥ 100
8, 75 ≤ 𝐿/𝐷 < 100
6, 50 ≤ 𝐿/𝐷 < 75
3, 25 ≤ 𝐿/𝐷 < 50

1.5, 𝐿/𝐷 < 25

 

 

Bubble departure diameter 𝐷𝑑 

The determination of the bubble departure diameter 𝐷𝑑 is of high importance not only for 𝛿𝑏, but also 

for the vapor blanket thickness (or equivalent diameter) 𝐷𝐵  since 𝐷𝐵 ≅ 𝐷𝑑  was one of the basic 

assumptions in the liquid sublayer dryout theory. Its modeling has been the focus of numerous efforts over 

the past decades. Different semi-empirical or mechanistic models have been proposed, among which Levy 

(1967)32 and Staub (1968)33 have received special attention in the development of mechanistic DNB 

models. 

The Levy approach was used in different CHF models such as Lee and Mudawar (1988),20 Kwon and 

Chang (1999),27 Liu et al. (2000),21 Kinoshita et al. (2001),34 and Yu and Zhang (2010).31 As a semi-

empirical model, it was based on the force balance (surface tension, drag, buoyancy) on a bubble in contact 

with the wall. It actually approximated 𝐷𝑑 to the distance to the tip of the bubble and determined the 

leading coefficient using data calibration. This model is not adopted in this work because it would yield 

unrealistic values for 𝑐2 and 𝛼𝑏. 

The Staub approach was another semi-empirical model used for predicting CHF by authors such as 

Celata et al. (1994, 1999),23,24 Kodama and Kataoka (2003),28 and Pan et al. (2016).30 This approach was 

also based on the force balance (surface tension, drag, buoyancy, bubble growth, lift) on a growing 

hemispherical shape bubble attached to the wall, and it can be expressed as: 

𝐷𝑑 =
32

𝑓

𝜎𝑐3𝜌𝑓

𝐺2
, (9) 

where the friction factor 𝑓 is calculated with the Colebrook-White equation23 for tube applications, 

1

√𝑓
= 1.14 − 2.0𝑙𝑜𝑔10(𝐷+

9.35

𝑅𝑒√𝑓
),  (10) 

with the surface roughness, 휀, to be in the order of the bubble diameter at departure, i.e., 휀 ≅ 𝐷𝑑. As 

explained in Celata et al.,23 the pressure drop gradient will rise at near-CHF conditions, as attached bubbles 

cause an increase in the surface roughness, but the coolant can still behave as single-phase liquid. 𝐷 is the 

tube diameter, and 𝑅𝑒 is the channel Reynolds number calculated with saturated liquid properties. The 

empirical constant 𝑐3 = 𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑡𝑒𝑛𝑠𝑖𝑜𝑛/(𝜋𝐷𝑑𝜎) was found to lie within the interval [0.015, 0.17] from 

pool boiling experiments with a contact angle between 20 and 70 degrees.33 Staub also calibrated 𝑐3 with 

some flow boiling water measurements and suggested a value of 0.02–0.03. Following the 

recommendation, Celata et al.23,24 used 𝑐3 = 0.03, whereas Pan et al.30 used a much smaller value of 
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𝑐3 = 0.0075. Kodama and Kataoka28 suggested that 𝑐3 should vary widely according to the complicated 

local thermal-hydraulic conditions, so they introduced a linear function of subcooling (bounded by the 

maximum/minimum values from pool boiling validation by Staub), although no validation was performed, 

and the function was made up solely based on qualitative parametric trends. It is therefore worth 

optimizing this constant with Thompson tube CHF data10 and developing a more reasonable piecewise 

constant function that varies with pressure 𝑃 [MPa], mass flux 𝐺 [kg/m2-s], and exit equilibrium quality 

𝑥𝑒,𝑜𝑢𝑡 [-]. The optimized function for 𝑐3 is presented in  

Table 3. The values are bounded within a reasonable interval and are in line with existing references. 

 

Table 3.  Optimized piecewise constant function for 𝒄𝟑 in Eq. (9). 

 𝐺 ≥ 7000  
5000 ≤ 𝐺

< 7000 

3000 ≤ 𝐺

< 5000 

2000 ≤ 𝐺

< 3000 

1000 ≤ 𝐺

< 2000 

500 ≤ 𝐺

< 1000 
𝐺 < 500 

𝑃 ≥ 10 

𝑥𝑒,𝑜𝑢𝑡 ≥ 0.1  − 0.120 0.075 0.040 0.030 0.015 0.006 

0.0 ≤ 𝑥𝑒,𝑜𝑢𝑡 < 0.1  0.150 0.070 0.055 0.035 0.020 0.012 0.005 

𝑥𝑒,𝑜𝑢𝑡 < 0.0  0.075 0.065 0.040 0.025 0.015 0.010 0.005 

3 ≤ 𝑃 < 10 

𝑥𝑒,𝑜𝑢𝑡 ≥ 0.1  0.170 0.120 0.070 0.040 0.030 0.015 0.006 

0.0 ≤ 𝑥𝑒,𝑜𝑢𝑡 < 0.1  0.110 0.070 0.050 0.030 0.020 0.012 0.005 

𝑥𝑒,𝑜𝑢𝑡 < 0.0  0.075 0.060 0.035 0.025 0.015 0.010 0.005 

𝑃 < 3 

𝑥𝑒,𝑜𝑢𝑡 ≥ 0.1  − − − − − − − 

0.0 ≤ 𝑥𝑒,𝑜𝑢𝑡 < 0.1  − − − 0.010 − − − 

𝑥𝑒,𝑜𝑢𝑡 < 0.0  − 0.010 0.010 − − − − 

 

Recent efforts in modeling the bubble departure diameter have focused on expanding and reevaluating 

the acting forces and have proposed more general formulas to calculate bubble diameter at departure to 

bulk or by sliding, as presented in the state-of-the-art model by Mazzocco et al.35 However, such 

mechanistic models also required calibration to determine the bubble growth force; the reassessed 

buoyancy force would depend on both advancing and receding contact angles, for which very few data 

are available with large uncertainties. Further optimization work will be required, and such models were 

only validated against low mass flux, high subcooling data. At this point, no bubble diameter 

measurements are available at high pressure, high flow conditions. Moreover, in the proximity of CHF, 

the bubble size would not be exactly the same as those measured 𝐷𝑑, since bubbles are more likely to 

coalesce and form vapor slugs. For the purpose of this work, a bubble departure diameter model based on 

the work of Levy or Staub is deemed reasonable and appropriate. 

 

Bubble region velocity 𝑈𝑏 

Using Eqs. (8)–(10), one can calculate the bubble region thickness 𝛿𝑏 and then the fraction of the 

cross sectional area occupied by the core region, 𝜂𝑐, defined as: 

𝜂𝑐 =
𝐴𝑐

𝐴
= (

𝐷−2𝛿𝑏

𝐷
)2   for tube applications,  (11) 
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where 𝐴 denotes the channel cross-sectional area. The void fraction and density in the core region, 𝛼𝑐 and 

𝜌𝑐, can be calculated from: 

𝛼𝑐 =
𝛼𝑜𝑢𝑡

𝜂𝑐
−

𝛼𝑏(1−𝜂𝑐)

𝜂𝑐
 (12) 

𝜌𝑐 = 𝜌𝑔𝛼𝑐 + 𝜌𝑙,𝑜𝑢𝑡(1 − 𝛼𝑐), (13) 

where the channel-averaged outlet void fraction, 𝛼𝑜𝑢𝑡, can be obtained from subchannel codes (e.g., CTF, 

VIPRE-01) or from a commonly used drift-flux approach such as Chexal-Lellouche,36 which requires the 

exit/local flow quality (𝑥𝑜𝑢𝑡) information. 𝑥𝑜𝑢𝑡 can be determined from subchannel analysis results or by 

using the well-accepted Levy32 or Saha and Zuber37 model. Assuming homogeneous flow in the core 

region,27,31 the exit core region quality 𝑥𝑐 turns to 

𝑥𝑐 =
𝜌𝑔𝛼𝑐

𝜌𝑐
  (14) 

The total liquid mass flow rate, �̇�𝑙, is written as: 

�̇�𝑙 = �̇�(1 − 𝑥𝑜𝑢𝑡) = 𝐺𝐴(1 − 𝑥𝑜𝑢𝑡) (15) 

In order to calculate the liquid mass flow rate in each region, one may start with the average liquid 

velocity in the bubble region, 𝑈𝑏𝑙 . This can be done by assuming that liquid within the bubbly layer 

follows the Karman velocity distribution, originally developed for single-phase turbulent flow, i.e., 

𝑈𝑏𝑙
+ = {

𝑦+, 0 ≤ 𝑦+ < 5

5.0𝑙𝑛𝑦+ − 3.05, 5 ≤ 𝑦+ < 30

2.5𝑙𝑛𝑦+ + 5.5, 𝑦+ ≥ 30

, (16) 

where 𝑈𝑏𝑙
+ = 𝑈𝑏𝑙/𝑈𝜏 , 𝑈𝜏 = √𝜏𝑤/𝜌𝑓 , 𝑦+ = 𝑦𝑈𝜏𝜌𝑓/𝜇𝑓 , 𝜏𝑤 = 𝑓𝐺

2/(8𝜌𝑓) . Hence, the average 

velocity becomes 

𝑈𝑏𝑙 = 𝑈𝑏𝑙
+ ∙ 𝑈𝜏 (17) 

and 

𝑈𝑏𝑙
+ =

{
  
 

  
 

1

𝑦𝛿𝑏
+ ∫ 𝑦+𝑑𝑦+

𝑦𝛿𝑏
+

0
, 0 ≤ 𝑦𝛿𝑏

+ < 5

1

𝑦𝛿𝑏
+ [∫ 𝑦+𝑑𝑦+

5

0
+ ∫ (5𝑙𝑛𝑦+ − 3.05)𝑑𝑦+

𝑦𝛿𝑏
+

5
], 5 ≤ 𝑦𝛿𝑏

+ < 30

1

𝑦𝛿𝑏
+ [∫ 𝑦+𝑑𝑦+

5

0
+ ∫ (5𝑙𝑛𝑦+ − 3.05)𝑑𝑦+

30

5
+ ∫ (2.5𝑙𝑛𝑦+ + 5.5)𝑑𝑦+

𝑦𝛿𝑏
+

30
], 𝑦𝛿𝑏

+ ≥ 30

, (18) 

with 𝑦𝛿𝑏
+ = 𝛿𝑏𝑈𝜏𝜌𝑓/𝜇𝑓. 

Once 𝑈𝑏𝑙  is known, one can calculate the liquid mass flow rate in the bubble region, �̇�𝑏𝑙 , as 

�̇�𝑏𝑙 = 𝜌𝑓𝑈𝑏𝑙𝐴𝑏𝑙 = 𝜌𝑓𝑈𝑏𝑙𝐴𝑏(1 − 𝛼𝑏) = 𝜌𝑓𝑈𝑏𝑙𝐴(1 − 𝜂𝑐)(1 − 𝛼𝑏), (19) 

and the liquid mass flow rate in the core region, �̇�𝑐𝑙, from Eqs. (15) and (19): 
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�̇�𝑐𝑙 = �̇�𝑙 − �̇�𝑏𝑙 (20) 

Then, the total mass flow rate in the core region is 

�̇�𝑐 = 𝜌𝑐𝑈𝑐𝐴𝜂𝑐, (21) 

where 

𝑈𝑐 = 𝑈𝑐𝑙 = 𝑈𝑐𝑣 =
�̇�𝑐𝑙

𝜌𝑙,𝑜𝑢𝑡𝐴𝑐𝑙
=

�̇�𝑐𝑙

𝜌𝑙,𝑜𝑢𝑡𝐴𝜂𝑐(1−𝛼𝑐)
   (homogeneous flow), (22) 

and the total mass flow rate in the bubble region is 

�̇�𝑏 = �̇� − �̇�𝑐 = 𝐺𝐴 − �̇�𝑐  (23) 

The exit bubble region quality 𝑥𝑏 turns to 

𝑥𝑏 =
�̇�𝑏𝑣

�̇�𝑏
= 1 −

�̇�𝑏𝑙

�̇�𝑏
 (24) 

Finally, the bubble region (average) velocity, 𝑈𝑏, can be expressed by 

𝑈𝑏 =
�̇�𝑏

𝜌𝑏𝐴(1−𝜂𝑐)
=

𝐺(𝑥𝑜𝑢𝑡−𝑥𝑐)

𝜌𝑏(𝑥𝑏−𝑥𝑐)(1−𝜂𝑐)
  (25) 

 

Liquid sublayer thickness 𝛿 

As illustrated in Figure 6, the liquid sublayer thickness 𝛿 is approximately the difference between the 

distance from the wall to the bubble centerline 𝑦 and one half of the vapor blanket thickness 𝐷𝐵, i.e., 

𝛿 = 𝑦 − 𝐷𝐵/2 = 𝑦 − 𝐷𝑑/2 (26) 

Making use of Eq. (16), one can obtain 

𝑦 =
𝜇𝑓

𝑈𝜏𝜌𝑓
∙ {

𝑈𝐵𝑙
+ , 0 ≤ 𝑈𝐵𝑙

+ < 5

exp[(𝑈𝐵𝑙
+ + 3.05)/5], 5 ≤ 𝑈𝐵𝑙

+ < 13.96

exp[(𝑈𝐵𝑙
+ − 5.5)/2.5], 𝑈𝐵𝑙

+ ≥ 13.96

, (27) 

where 𝑈𝐵𝑙
+ = 𝑈𝐵𝑙/𝑈𝜏, and 𝑈𝐵𝑙 is the liquid velocity at the vapor blanket centerline. The latter is calculated 

via a force balance on the vapor blanket between buoyancy and drag forces and can be arranged as 

𝑈𝐵𝑙 = 𝑈𝑙 (𝑦 = 𝛿 +
𝐷𝐵

2
) = 𝑈𝐵 − (

2𝐿𝐵𝑔(𝜌𝑓−𝜌𝑔)

𝜌𝑓𝐶𝐷
)0.5 , (28) 

where 𝑈𝐵  and 𝐿𝐵  come from Eqs. (5) and (2), respectively, and the drag coefficient 𝐶𝐷  can be 

obtained by either Harmathy (if exit pressure is smaller than 1 MPa) or Chan and Prince (otherwise).21 

In Eqs. (1)–(28), the CHF can be predicted by an iterative procedure for any given channel geometrya 

and flow conditions. 

                                                 
a Some of the closures need to be further modified for non-tube applications. 
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3.3. Model Evaluation 

As summarized in Table 4 and plotted in Figure 8, the improved new model is compared to the 2006 

look-up table,3 the Liu model,21 and the best-estimate NN 10-fold cross-validation result (Section 2.3, 

from all data) against the 1,439 tube test cases (as listed in Error! Reference source not found.). For 

most selected datasets, the new model is significantly better than Liu, one of the relatively successful 

mechanistic models thus far. It outperforms cross-validated NN and is in line with the solely data-mapped 

look-up table. With the new model, 92% of test cases are predicted within ±20% uncertainty range (98% 

within ±30% uncertainty). 

When compared to experimental data, the relative errors of the predicted CHF are assessed in Figures 

9–13. It is important to note that the new model has demonstrated unbiased close agreement with 

measurements over the entire ranges of interest (pressure, mass flux, equilibrium quality, tube diameter, 

and length-to-diameter ratio) and has generally showed less scatter than the other predictive tools. As 

discussed in Section 3.1 and as illustrated in Figure 11 from the Liu results, most existing physics-based 

models only considered subcooled boiling, and their assumptions might not be valid for low subcooling 

or saturated flow cases. 

 

Table 4.  Predicted tube SS CHF performance with different models. 

Tube dataset # data 

Look-up 

table 

rRMSE 

Look-up 

table within 

20% error 

Liu 

rRMSE 

Liu within 

20% error 

NN 

rRMSE 

NN within 

20% error 

New model 

rRMSE 

New model 

within 20% 

error 

Inasaka 7 0.31 43% 0.18 71% 0.29 29% 0.20 71% 

Peskov 17 0.10 94% 0.14 94% 0.47 29% 0.11 100% 

Thompson 1,202 0.12 94% 0.32 52% 0.13 92% 0.12 91% 

Weatherhead 162 0.05 100% 0.18 75% 0.09 99% 0.09 98% 

Williams 51 0.04 100% 0.21 63% 0.14 84% 0.11 90% 

Total 1,439 0.12 95% 0.30 56% 0.14 92% 0.12 92% 
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(a) Inasaka data 

 

(b) Peskov data 
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(c) Thompson dataa 

 

(d) Weatherhead data 

                                                 
a For the selected Thompson dataset, 72 out of 1,439 cases failed to converge using the Liu model. 
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(e) Williams data 

Figure 8. Predicted vs. measured tube CHF with look-up table,  

Liu model, best-estimate NN (10-fold), and new model. 

 

(a) Inasaka data 
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(b) Peskov data 

 

(c) Thompson data 
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(d) Weatherhead data 

 

(e) Williams data 

Figure 9. Tube CHF relative error vs. pressure. 
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(a) Inasaka data 

 

(b) Peskov data 
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(c) Thompson data 

 

(d) Weatherhead data 
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(e) Williams data 

Figure 10. Tube CHF relative error vs. mass flux. 

 

 

(a) Inasaka data 
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(b) Peskov data 

 

(c) Thompson data 
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(d) Weatherhead data 

 

(e) Williams data 

Figure 11. Tube CHF relative error vs. exit equilibrium quality. 
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(a) Inasaka data 

 

(b) Peskov data 
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(c) Thompson data 

 

(d) Weatherhead data 
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(e) Williams data 

Figure 12. Tube CHF relative error vs. tube diameter. 

 

 

(a) Inasaka data 
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(b) Peskov data 

 

(c) Thompson data 
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(d) Weatherhead data 

 

(e) Williams data 

Figure 13. Tube CHF relative error vs. length-to-diameter ratio. 
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4. CONCLUSIONS AND FUTURE WORK 

This report extends the predictive capabilities of data- and physics-driven tools for steady-state DNB-

type CHF by developing two advanced approaches and providing insight into further improvements of the 

transient CHF model. 

The proposed data-driven approach consists of using deep feed-forward NN and tree-based RF to 

cross-validate with 1,865 CHF test cases, covering a wide range of flow conditions and channel geometries. 

The best-estimate ML-based predictors compare favorably with the widely used look-up table for annulus 

and plate, and sensitivity analysis has confirmed their effectiveness. The key advantage of ML-based 

methods is their online extensibility of applicability domain. Changing from local quality to inlet 

subcooling in the input features yields even better agreement with measurements. In terms of 

computational time, for a single evaluation of all 1,865 data points on a personal computer, RF runs the 

fastest (< 1s), while NN (1–2 min) is slightly slower than the look-up table. 

The proposed physics-driven approach has combined key assumptions and parameters in the state-

of-the-art mechanistic theories of liquid sublayer dryout and near-wall bubble crowding. A more realistic 

understanding of local mechanisms has been modeled. The new model has been optimized and validated 

against 1,439 tube data, showing considerably improved performance as compared to one of the recent 

mechanistic models. It has demonstrated unbiased close agreement with measurements over the selected 

wide range of operating conditions. 

The next step will extend the improved physics-driven model to non-tube geometry applications. 

More experimental data will be the key to a more deeply optimized predictive tool. With a larger database, 

a thorough process for training, validation, and testing may be permitted for ML-based methods. Their 

input features will be increased or modified further if other channel geometries are considered. For 

instance, with rod bundle data, one may need to include bundle-specific features such as spacer grids and 

nonuniform power distribution, as well as local flow conditions with the help of subchannel tools like 

CTF. Future work will also couple physics-based models (or table methods) and ML by means of a hybrid 

grey-box approach.38 Residuals by the mechanistic (or table) CHF predictors will be added into the input 

feature vector, and the NN will be trained, along with other features of interest. In this way, the NN will 

work to pick up any additional (undiscovered) dependencies between the input features and will be 

guaranteed to perform at least as well as the standalone mechanistic/table approach or the traditional black-

box NN. 

Finally, the transient CHF model will be further improved based on the steady-state progress. 

Depending on the applications of interest, a new SS model (data-driven, physics-driven, or blended) may 

be implemented in CTF. Its solution will serve to be the starting point of the liquid sublayer thickness 

evaluation in the transient model. The advanced physics-driven approach will help advance understanding 

and model the DNB triggering mechanisms at different geometry and flow conditions under time-

dependent scenarios. Ultimately, full-core RIA simulations will be performed with CTF to demonstrate 

the usefulness of the improved model. 
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